Strict lower bounds with separation of sources of error in non-overlapping domain decomposition methods
نویسندگان
چکیده
This article deals with the computation of guaranteed lower bounds of the error in the framework of finite element (FE) and domain decomposition (DD) methods. In addition to a fully parallel computation, the proposed lower bounds separate the algebraic error (due to the use of a DD iterative solver) from the discretization error (due to the FE), which enables the steering of the iterative solver by the discretization error. These lower bounds are also used to improve the goal-oriented error estimation in a substructured context. Assessments on 2D static linear mechanic problems illustrate the relevance of the separation of sources of error and the lower bounds’ independence from the substructuring. We also steer the iterative solver by an objective of precision on a quantity of interest. This strategy consists in a sequence of solvings and takes advantage of adaptive remeshing and recycling of search directions.
منابع مشابه
A strict error bound with separated contributions of the discretization and of the iterative solver in non-overlapping domain decomposition methods
This paper deals with the estimation of the distance between the solution of a static linear mechanic problem and its approximation by the finite element method solved with a non-overlapping domain decomposition method (FETI or BDD). We propose a new strict upper bound of the error which separates the contribution of the iterative solver and the contribution of the discretization. Numerical ass...
متن کاملBlind Voice Separation Based on Empirical Mode Decomposition and Grey Wolf Optimizer Algorithm
Blind voice separation refers to retrieve a set of independent sources combined by an unknown destructive system. The proposed separation procedure is based on processing of the observed sources without having any information about the combinational model or statistics of the source signals. Also, the number of combined sources is usually predefined and it is difficult to estimate based on the ...
متن کاملOn Non-overlapping Domain Decomposition Preconditioners for Discontinuous Galerkin Finite Element Methods in H-type Norms
Abstract. We analyse the spectral bounds of non-overlapping domain decomposition additive Schwarz preconditioners for hp-version discontinuous Galerkin finite element methods in H-type norms. Using original approximation results for discontinuous finite element spaces, it is found that these preconditioners yield a condition number bound of order 1 + Hp/hq, where H and h are respectively the co...
متن کاملLower Bounds for Eigenvalues of Elliptic Operators by Overlapping Domain Decomposition
In this paper, we consider a new approach to estimation from below of the lowest eigenvalues of symmetric positive definite elliptic operators. The approach is based on the overlapping domain decomposition procedure and on the replacement of subdomain operators by special low rank perturbed scalar operators. The algorithm is illustrated by applications to model problems with mixed boundary cond...
متن کاملConvergence estimates for multigrid algorithms with SSC smoothers and applications to overlapping domain decomposition
In this paper we study convergence estimates for a multigrid algorithm with smoothers of successive subspace correction (SSC) type, applied to symmetric elliptic PDEs. First, we revisit a general convergence analysis on a class of multigrid algorithms in a fairly general setting, where no regularity assumptions are made on the solution. In this framework, we are able to explicitly highlight the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017